
Refresher : Core Java Concepts

android.suvenconsultants.com 1

Topics being covered :

1. OO concepts
2. Brief history about Java
3. Different types of Inheritance
4. Interfaces
5. Abstract Classes
6. Rules for declaring identifiers
7. What is JVM ?

This Module is for
recalling all Necessary

Core Java concepts,
before starting

android Programming

This Module is not
asked in the

Certification test

Class Object

Class is a Template Object is a copy of the
Template

Rocky sir - 98925 44177 2

Entity  Class : is defined as a collection of Attributes(properties)
and methods which operate on those attributes.

Real life Entities

• No. of windows
• door_locked
• Carpet area
• Pincode

Each Entity  Attributes

• No. of seats
• No. of tires
• Engine cc
• License No.

• Watts
• Toaster type
• Make
• Warranty

And methods too

• getAddress ()
• isLocked()

• driving ()
• parking()

• toast()

Rocky sir - 98925 44177 3

Object consumes space [Equal to total space taken by all attributes]

Class does not consume space

Object is defined as an Instance of class

In Java we make Objects in 2 steps

Declaration

Instantiation

House h ;

h = new House() ;

h

Rocky sir - 98925 44177 4

class Box {

double width;

double height;

double depth;

// Initialize the data values for the Box.

void setBox() {

width = 10; height = 10; depth = 10;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

Rocky sir - 98925 44177 5

A Class Example :

Make object of Box

Box mybox1 = new Box();

double vol;

// set attributes of the Box
mybox1.setBox();

// get volume of the box
vol = mybox1.volume();

System.out.println("Volume
is " + vol);

Related to Class and Object we have many OOP concept

Inheritance

Polymorphism

Encapsulation

Abstraction

Derived class inheriting properties of Parent class

An object behaving differently in different situations

Putting the Data and methods together in a class

Using the data only via methods of the class

Rocky sir - 98925 44177 6

Inheritance

Vehicle  Generic class  Parent class or Super class

Sports Car  specialized class  child or sub class

Vehicle Data
int engine_cc
int seating_capc
float price
int gear

Vehicle Action
changeGear()
getSpec()
setSpec()

Sports_Car Data
int highest_speed

Sports_Car Action
void driveFastMode()

In Java we use extends k/w
E.g. : class sportsCar extends Vehicle

Rocky sir - 98925 44177 7

Person

The following classes inherit from ?

Common properties or Data
name , gender , age , height, weight, profession

battingAvg softwares No_of_gifts

Rocky sir - 98925 44177 8

Polymorphism

An object behaving
differently in different

situations

float area(int l , int b)

float area(float radius)

float area(int side)

All method names are
same but work differently

This is called Polymorphism

OR Method Overloading

Rocky sir - 98925 44177 9

Encapsulation

Class Point

{

int x;

int y;

void getX() { System.out.println(“X = ”+x);}

void getY() { System.out.println(“Y = ”+y);}

void setX() { x = 3; }

void setY() { y= 5; }

}

Data

Methods

Putting the Data and methods together in a class

Abstraction Using the data only via methods of the class

Rocky sir - 98925 44177 10

We can access data of Point Class in 2 ways :

Abstraction

Point p ;
p = new Point();
p.x = 10;
p.y = 10;

Point p ;
p = new Point();
p.setX();
p.setY();

Ensures Abstraction

Rocky sir - 98925 44177 11

Advanced Concepts

To call method of a class , we use

Object_name.method_name()

Circle

radius

area()

C

Circle C = new Circle();

C.area();  calculate area of Circle

Pass a message (area) to an object C means object C calls
method area.

Message
Passing

Rocky sir - 98925 44177 12

Coupling
Coupling is a measure of
“ how much is one class dependent upon others ”

A

CB

A

B C

Case 1: make changes to A Case 2: make changes to A
How many classes get affected ?

Low Coupling  better
Rocky sir - 98925 44177 13

Cohesion
Cohesion is a measure of
“how strongly related and focused are the responsibilities of a class”

Circle

radius

area()

perimeter()

volume() High cohesion  better

responsibilities methods

Circle

radius

area()

perimeter()

Rocky sir - 98925 44177 14

Inheritance

Polymorphism

Encapsulation

Abstraction

Derived class inheriting properties of Parent class

An object behaving differently in different situations

Putting the Data and methods together in a class

Using the data only via methods of the class

Recap

Information Hiding

Rocky sir - 98925 44177 15

• Message passing

• Coupling

• Cohesion

Rocky sir - 98925 44177 16

Recap

An object Calling its method.

Measure of how much is 1 class dependent on the Other.

Measure of How strongly related and focused are

responsibilities of a class.

• James Gosling , Mike Sheridan, and Patrick Naughton
initiated the Java language project in June 1991.

• Initially called Oak , then renamed as Green , finally as named
as Java

• Sun Microsystems released the first public implementation as Java 1.0 in 1995. It
promised "Write Once, Run Anywhere" (WORA).

• Oracle Corporation acquired “Java” from Sun Microsystems in 2009-10

• The Oracle implementation is packaged into two different distributions:

The Java Runtime Environment (JRE) which contains the parts of the Java SE platform
required to run Java programs and is intended for end-users, and the

Java Development Kit (JDK), which is intended for software developers and includes
development tools such as Java compiler, Javadoc, Jar, and a debugger.

Rocky sir - 98925 44177 17

Very Brief History : Java

http://en.wikipedia.org/wiki/Java_compiler
http://en.wikipedia.org/wiki/Javadoc
http://en.wikipedia.org/wiki/JAR_(file_format)
http://en.wikipedia.org/wiki/Debugger

1995 , James Gosling from Sun Microsystems

The goal was to provide a simpler and platform-independent
alternative to C++ , for Programming devices.

Java comes 3 flavors :
1. J2SE (Java 2 Standard Edition)
2. J2EE (Java for Enterprise Edition)
3. J2ME (Java 2 Micro Edition)

android.suvenconsultants.com 18

Remember ?

Is packaged into 2 different distributions :
1> JRE (Java run time Environment)
2> JDK (Java Development kit)

Contains packages

Contains Javac

android.suvenconsultants.com 19

Why Learn Java Basics?

Write less code: compared to C++.

Write better code: As Java is OOP's

Develop programs more quickly : As Java has many Build-in packages / classes

Avoid platform dependencies : As Java uses JVM

Write once, run anywhere : Due to the .class files

Distribute software more easily

Most important , to develop , Android Apps

android.suvenconsultants.com 20

Important Concepts

Inheritance

4 - Types of Inheritance

1. Single or simple

2. Multi level

3. Hierarchical

4. Multiple

1. Single or simple

Student

Engineering
Student

class Student {
int roll_no;
String name;
int get(int p, String q){
roll_no=p; name=q;
return(0);
}
void Show(){
System.out.println(name);
System.out.println(roll_no);
} }

class EngStudent extends Student {
String spec;
int get(String spec){
this.spec = spec;
return(0);
}
void Show(){
super.Show();
System.out.println(spec);
} }

2. Multi level

Student

Engineering
Student

Computer_
Engr_Student

class Computer_Engr_Student extends Eng_Student
{
String university;
double marks_in_java_programming;
int get(String u , double m){
university = u; marks_in_java_programming=m;
return(0);
}
void Show(){
super.Show();
System.out.println(university);
System.out.println(marks_in_java_programming);
} }

class Bird {

public void fly() {

System.out.println("Generally, bird fly"); }

}

class Parrot extends Bird {

public void eat() { System.out.println("Parrot eats fruits and
seeds"); }

}

class Vulture extends Bird {

public void vision() { System.out.println("Vulture can see from
high altitudes"); }

}

3. Hierarchical  1 parent and 2 or more child

android.suvenconsultants.com 24

public class FlyingCreatures {
public static void main(String args[]) {
Parrot p1 = new Parrot();
p1.eat();
p1.fly();
v1 = new Vulture();
v1.vision();
v1.fly();
} }

Bird

Parrot Vulture

Rule : we cannot use extends k/w twice

4. Multiple : A class Inheriting from 1 base class and 1 or more Interfaces

Class A extends parent1 extends parent2 {
…
}

Not allowed

Soln : use Interfaces

Class A extends parent1 implements interface1, interface2 {
………
}

android.suvenconsultants.com 26

Interfaces

Defn : Interface has abstract methods and constants.
i.e. it specifies what a class must do, but not how it does it.

access interface name {

return-type method-name1(parameter-list);
return-type method-name2(parameter-list);

type final varname1 = value;
type varname2 = value;
….
}

access  public / default

final  constant

final  by default

/* Area Of Rectangle and Triangle using Interface * /

interface Area {
float compute(float x, float y);
}

class Rectangle implements Area {
public float compute(float x, float y)
{
return(x * y);
}
}

class Triangle implements Area {

public float compute(float x, float y)
{
return(x * y/2);
}
}

Interface

Class 1

Class 2

class InterfaceArea
{
public static void main(String args[])
{
Rectangle rect = new Rectangle();

Triangle tri = new Triangle();

Area area;

area = rect;

System.out.println("Area Of Rectangle = "+ area.compute(1,2));

area = tri;

System.out.println("Area Of Triangle = "+ area.compute(10,2));
}
}

Object of interface

Referring to object implementing the Interface

Referring to object implementing the Interface

android.suvenconsultants.com 29

What is Abstract Class ?

1. Any class that contains 1 or more abstract methods must also
be declared abstract.

2. There can be no objects of an abstract class. i.e., cannot use
“new” operator.

3. 1 cannot declare abstract constructors, or abstract static
methods.

4. Any subclass of an abstract class must either implement all of
the abstract methods in the superclass, or be itself declared
abstract.

For Self reading

4 Access Modifiers

private

public

protected

Visible to the class only

Visible to the world

Visible to all subclasses inside and outside
the package

Default or No Modifier Visible to the package.

class Test {

int a; // default access

public int b; // public access

private int c; // private access

// methods to access c

void setc(int i) { // set c's value

c = i;

}

int getc() { // get c's value

return c;

}

}

Cannot be
accessed outside

the class.
Hence methods

needed.

Rule 1: A class can have attributes of all 4 access modifiers

Rule 2: for private  always code setters and getters

Simple Example of Access Modifiers :

class AccessTest {

public static void main(String args[]) {

Test ob = new Test();

ob.a = 10;

ob.b = 20;

// ob.c = 100; // Error!

ob.setc(100); // OK

System.out.println("a, b, and c: " + ob.a + " " + ob.b + " " + ob.getc());

}

}

Allowed

Why ?

Using above class Test :

Identifiers  used for

Java is case-sensitive, so VALUE and Value are different.

Some examples of valid identifiers are:

AvgTemp count a4 $test this_is_ok

Invalid variable names include:

2count high-temp Not/ok

android.suven.net 33

 class names
method names
 variable names.

 No special chars
 Don’t start with digit
 No k/w allowed

Rules for Identifier Declaration

android.suvenconsultants.com 34

Java Is a Strongly Typed Language 1st declare then use

Type conversions

Implicit or Automatic

Explicit

When we go from lower to higher
data type
int a;
byte b = 3;
a = b; // Implicit cast happens

When we go from higher to lower data type
int a = 5;
byte b;
b = (byte)a; // there could be loss of information

System.out.println(“Enter Age ”);

int age;

DataInputStream in = new DataInputStream(System.in);

age = Integer.parseInt(in.readLine());

System.out.println(“Age is = ” + age);

age = Integer.parseInt(in.readLine());

Wrapper class
Converting to

int
Read from k/b

Rule: parse  convert

Static method

Wrapper Class We use wrapper classes to convert
from String to approp data type

Most common parse methods

1. static int parseInt(String s)

2. static float parseFloat(String s)

3. static double parseDouble(String s)

4. static byte parseByte(String s)

5. static Long parseLong(String s)

parseX()  converts from String to Respective type X

Wrapper Class for each primitive type

TYPES OF ERRORS

• Dividing an integer by zero

• Accessing an element that is out of the bounds of an array

• Trying to store a value into an array of an incompatible class or type

• Attempting to use a negative size for an array

Compile-time errors

Run-time errors

All syntax errors.
These are detected by java compiler

Class Error1
{ public static void main(String args [])

{
System. out. println(“Hello Java!”)

} }

Exception

On an Exception 
java generates an error message and aborts the program.

Class Error2
{

public static void main (String args [])
{

int a = 10;
int b = 5;
int c = 5;
int x = a/(b-c);
System. out. println (“x = “ + x);
int y = a/ (b + c);
System. out. println (“y = “ + y);

}
}

Exception : divide by 0

Simple 4 steps to handle exception

1. HIT the exception

2. THROW the exception

3. CATCH the exception

4. HANDLE the exception

Use try-catch block

Try
{

Statement; // generates an exception
}
Catch (Exception-type e)
{

Statement; //processes the exception
}

Hit and throw

Catch And Handle

What is JVM ?

.java file  HLL

javac

.class file or byte code MLL

java

Output

JVM

Class libraries
Or JRE

Intel AMD MAC book

Windows 8 Linux MAC OS

android.suven.net 41

Many Advantages of JVM or 2 step Process

• Secure

• Portable

• Architecture-neutral

• Interpreted

• High performance

• Distributed

Src code is not given, .class file is released

Compile on 1 pc and run on another

Runs on all OS

2nd step called Interpretation

.class files can be mailed and run on remote pc

android.suven.net 42

android.suvenconsultants.com 43

Lets start with Android OS Programming

